

Machine	Learning
	

Step-by-Step	Guide	To	Implement
Machine	Learning	Algorithms	with	Python

	

	

	

	

	

	

	

	

Author

Rudolph	Russell

© Copyright	2018	-	All	rights	reserved.

	
If	you	would	like	to	share	this	book	with	another	person,	please	purchase	an
additional	copy	for	each	recipient.	Thank	you	for	respecting	the	hard	work	of
this	author.	Otherwise,	the	transmission,	duplication	or	reproduction	of	any	of
the	following	work	including	specific	information	will	be	considered	an	illegal
act	irrespective	of	if	it	is	done	electronically	or	in	print.	This	extends	to	creating
a	secondary	or	tertiary	copy	of	the	work	or	a	recorded	copy	and	is	only	allowed
with	an	express	written	consent	from	the	Publisher.	All	additional	right	reserved.

Table	of	Contents

	
CHAPTER	1
INTRODUCTION	TO	MACHINE	LEARNING
Theory
What	is	machine	learning?
Why	machine	learning?
When	should	you	use	machine	learning?
Types	of	Systems	of	Machine	Learning
Supervised	and	unsupervised	learning
Supervised	Learning
The	most	important	supervised	algorithms
Unsupervised	Learning
The	most	important	unsupervised	algorithms

Reinforcement	Learning
Batch	Learning
Online	Learning
Instance	based	learning
Model-based	learning
Bad	and	Insufficient	Quantity	of	Training	Data
Poor-Quality	Data
Irrelevant	Features
Feature	Engineering

Testing
Overfitting	the	Data
Solutions

Underfitting	the	Data
Solutions

EXERCISES
SUMMARY
REFERENCES

	

CHAPTER	2

CLASSIFICATION
Installation
The	MNIST
Measures	of	Performance
Confusion	Matrix
Recall
Recall	Tradeoff
ROC
Multi-class	Classification
Training	a	Random	Forest	Classifier
Error	Analysis
Multi-label	Classifications
Multi-output	Classification
EXERCISES
REFERENCES

	

CHAPTER	3
HOW	TO	TRAIN	A	MODEL
Linear	Regression
Computational	Complexity
Gradient	Descent
Batch	Gradient	Descent
Stochastic	Gradient	Descent
Mini-Batch	Gradient	Descent
Polynomial	Regression
Learning	Curves
Regularized	Linear	Models
Ridge	Regression
Lasso	Regression

EXERCISES
SUMMARY
REFERENCES

	

Chapter	4
Different	models	combinations
Implementing	a	simple	majority	classifer
Combining	different	algorithms	for	classification	with	majority	vote
Questions

CHAPTER	1

INTRODUCTION	TO	MACHINE	LEARNING
	

Theory
If	I	ask	you	about	“Machine	learning,”	you'll		probably		imagine	a	robot	or
something	like	the		Terminator.	In	reality	t,	machine	learning	is	involved		not
only	in	robotics,	but	also	in	many	other	applications.	You	can	also	imagine
something	like	a	spam	filter	as	being		one	of	the	first	applications	in	machine
learning,	which			helps		improve	the	lives	of	millions	of	people.	In	this	chapter,
I'll	introduce	you	what	machine	learning	is,	and	how	it	works.

	

What	is	machine	learning?
Machine	learning	is	the	practice		of	programming	computers	to	learn	from	data.
In	the	above	example,	the	program	will		easily	be	able	to	determine	if		given	are
important	or	are		“spam”.	In	machine	learning,	data	referred	to	as		called	training
sets	or	examples.

	

	Why	machine	learning?
Let’s	assume	that	you'd	like	to	write	the	filter	program	without	using	machine
learning	methods.	In	this	case,	you	would	have	to	carry	out	the	following	steps:
	
∙	In	the	beginning,	you'd	take	a	look	at	what	spam	e-mails	looks	like.	You	might	
select	them	for	the		words	or	phrases	they	use,	like	“debit	card,”	“free,”	and	so
on,	and	also	from	patterns	that	are	used	in	the	sender’s	name	or	in	the	body	of
the	email
	
∙	Second,	you'd	write	an	algorithm	to	detect	the	patterns	that	you've	seen,	and
then	the	software	would	flag	emails	as	spam	if	a	certain	number	of	those	patterns
are	detected.
	
	
∙	Finally,	you'd		test	the	program,	and	then	redo	the	first	two	steps	again	until	the
results	are	good	enough.

Because	the	program	is	not	software,	it	contains	a	very	long	list	of	rules	that	are
difficult	to		maintain.	But	if	you		developed	the	same	software	using	ML,	you'll
be	able	to	maintain	it	properly.

In	addition,	the	email	senders	can		change	their	e-mail	templates		so	that	a	word
like	“4U”	is	now		“for	you,”	since	their	emails	have	been		determined		to	be
spam.	The	program	using		traditional	techniques	would	need	to	be	updated,
which	means	that,		if	there	were	any	other	changes,	you	would	l	need	to	update
your	code	again	and	again	and	again.

On	the	other	hand,	a		program	that	uses	ML	techniques	will	automatically	detect
this	change	by	users,	and	it	starts	to	flag	them	without	you	manually	telling	it	to.

Also,	we	can	use	,machine	learning	to	solve	problems	that	are	very	complex	for
non-machine	learning	software.	For	example,	speech	recognition:	when	you	say
“one”	or	“two”,	the	program	should	be	able	to	distinguish	the	difference.	So,	for

this	task,		you'll	need	to	develop	an	algorithm	that	measures	sound.

In	the	end,	machine	learning	will	help	us	to	learn,	and		machine-learning
algorithms	can	help	us	see	what	we	have	learned.

	

When	should	you	use	machine	learning?
•	When	you	have		a	problem	that	requires	many		long	lists	of	rules	to	find		the
solution.	In	this	case,	machine-learning	techniques	can	simplify	your	code	and
improve	performance.

•	Very	complex	problems	for	which	there	is	no	solution	with	a	traditional
approach.

•	Non-	stable	environments’:	machine-learning	software	can	adapt	to	new	data.

	

Types	of	Systems	of	Machine	Learning	
There	are	different	types	of	machine-learning	systems.	We	can	divide	them	into
categories,	depending	on	whether	

•	They	have	been	trained	with	humans		or	not

-								Supervised
-								Unsupervised
-								Semi-supervised
-								Reinforcement	Learning

•	If	they	can	learn	incrementally

•	If	they	work	simply	by	comparing	new	data	points	to	find		data	points,	or	can
detect	new	patterns	in	the	data	,and	then	will	build	a	model.

	

Supervised	and	unsupervised	learning
We	can	classify	machine	learning	systems	according	to	the	type	and	amount	of
human	supervision	during	the	training.		You	can	find	four	major	categories,	as
we	explained	before.

-								Supervised	learning
-								Unsupervised	learning
-								Semi-supervised	learning
-								Reinforcement	learning

	

Supervised	Learning
In	this	type	of	machine-learning	system,	the	data	that	you	feed	into	the
algorithm,	with	the	desired	solution,	are	referred	to	as	“labels.”

-								Supervised	learning	groups	together	a	tasks	of	classification.	The	above
program	is	a	good	example	of	this	because	it's	been	trained	with	many	emails
at	the	same	time	as	their	class.

	

	

Another	example	is	to	predict	a	numeric	value	like	the	price	of	a	flat,	given	a	set
of	features	(location,	number	of	rooms,	facilities)	called	predictors;	this	type	of
task	is	called	regression.

You	should	keep	in	mind	that	some	regression	algorithms	can	be	used	for
classifications	as	well,	and	vice	versa.

	

The	most	important	supervised	algorithms
-								K-nears	neighbors
-								Linear	regression
-								Neural	networks
-								Support	vector	machines
-								Logistic	regression
-								Decision	trees	and	random	forests

Unsupervised	Learning
In	this	type	of	machine-learning	system,	you	can	guess	that	the	data	is	unlabeled.

	

The	most	important	unsupervised	algorithms
-								Clustering:	k-means,	hierarchical	cluster	analysis
-								Association	rule	learning:	Eclat,	apriori
-								Visualization	and	dimensionality	reduction:	kernel	PCA,	t-distributed,
PCA

As	an	example,	suppose	you've	got		many	data	on		visitor	Using	of	one	of	our

algorithms	for	detecting	groups	with	similar	visitors.	It	may	find	that	65%	of
your	visitors	are	males	who	love	watching	movies	in	the	evening,	while	30%	
watch	plays	in	the	evening;	in	this	case,	by	using	a	clustering	algorithm,	it	will
divide	every	group	into	smaller	sub-groups.

There	are	some	very	important	algorithms,	like	visualization	algorithms;	these
are	unsupervised	learning	algorithms.	You'll	need	to	give	them	many	data	and
unlabeled	data	as	an	input,	and	then	you'll	get	2D	or	3D	visualization	as	an
output.

The	goal	here	is	to	make	the	output	as	simple	as	possible	without	losing	any	of
the	information.	To	handle	this	problem.	it	will	combine			several	related	features
into		one	feature:	for	example,	it	will	cmbn	a	car’s	make	with	its	model.	This	is
called	feature	extraction.

Reinforcement	Learning
Reinforcement	learning	is	another	type	of	machine-learning	system.	An	agent
“AI	system”	will	observe	the	environment,	perform	given	actions,	and	then
receive	t	rewards	in	return.	With	this	type,	the	agent	must	learn	by	itself.	Ties
called	a	policy.

You	can	find	this	type	of	learning	type	in	many	robotics	applications	that	learn
how	to	walk

	

Batch	Learning
In	this	kind	of	machine-learning	systems,	the	system	can’t	learn	incrementally:
the	system	must	obtain	all	the	needed	data	.	That	means	it	will	require	many
resources	and	a	huge	amount	of	time,	so	it’s	always	done	offline.	So,	to	work
with	this	type	of	learning,	the	first	thing	to	do	is	to	train	the	system,	and	then
launch	it	without	any	learning.

	

Online	Learning
This	kind	of	learning	is	the	opposite	of	batch	learning.	I	mean	that,	here,	the
system	can	learn	incrementally	by	providing	the	system	with	all	the	available
data	as	instances	(groups	or	individually),	and	then	the	system	can	learn	on	the
fly.

You	can	use	this	type	of	system	for	problems	that	require	the	continuous	flow	of
data,	which	also	needs	to	adapt	quickly	to	any	changes.	Also,	you	can	use	this
type	of	system	to	work	with	very	large	data	sets,

	

You	should	know	how	fast	your	system	can	adapt	to	any	changes	in	the	data’s
“learning	rate.”	If	the	speed	is	high,	means	that	the	system	will	learn	quite,
quickly,	but	it	also	will	forget	old	data	quickly.

	

Instance	based	learning
This	is	the	simplest	type	of	learning	that	you	should	learn	by	heart.		By	using
this	type	of	learning	in	our	email	program,	it	will	flag	all	of	the	emails	that	were
flagged	by	users.

.

	

	

Model-based	learning
There	is	another	type	of	learning	in	which	learning	from	examples	allows
construction		to	make	predictions

Bad	and	Insufficient	Quantity	of	Training	Data
Machine-learning	systems	are	not	like	children,	who	can	distinguish	apples	and
oranges	in	all	sorts	of	colors	and	shapes,	but	they		require		lot	of	data	to	work
effectively,	whether	you're	working	with	very	simple	programs	and	problems,		or
complex	applications	like		image	processing	and	speech	recognition.	Here	is	an
example	of	the	unreasonable	effectiveness	of	data,	showing	the	MS	project,
which	includes	simple	data	and	the	complex	problem	of	NLP.

Poor-Quality	Data
If	you're	working	with	training	data	that	is	full	of	errors	and		outliers,	this		will
make	it	very	hard	for	the	system	to	detect	patterns	,	so	it	won't	work	properly.
So,	if	you	want	your	program	to	work	well,	you	must	spend	more	time	cleaning
up	your	training	data.

	

Irrelevant	Features
The	system	will	only	be		able		to	learn	if	the	training	data	contains	enough
features	and	data	that	aren’t	too	irrelevant.	The	most	important	part	of	any	ML
project	is	to	develop	good	features	“of	feature	engineering”.

	

Feature	Engineering
The	process	of	feature	engineering	goes	like	this:

.	Selection	of	features:	selecting	the	most	useful	features.

.	Extraction	of	features:	combining	existing	features	to	provide	more	useful
features.

.	Creation	of	new	features:	creation	of	new	features,	based	on	data.

	

Testing
If	you'd	like	to	make	sure	that	your	model	is	working	well	and	that	model	can
generalize	with	new	cases,	you	can	try	out		new	cases	with	it	by	putting	the
model	in	the	environment	and	then	monitoring	how	it	will	perform.	This	is	a
good	method,	but	if	your	model	is	inadequate,	the	user	will	complain.

	

You	should	divide	your	data	into	two	sets,	one	set	for	training	and	the	second
one	for	testing,	so	that	you	can	train	your	model	using	the	first	one	and	test	it
using	the	second.	The	generalization	error	is	the	rate	of	error	by	evaluation	of
your	model	on	the	test	set.	The	value	you	get	will	tell	you	if	your	model	is	good
enough,	and	if	it	will	work	properly.

	

If	the	error	rate	is	low,	the	model	is	good	and	will	perform	properly.	In	contrast,
if	your	rate	is	high,	this	means	your	model	will	perform	badly	and	not	work
properly.	My	advice	to	you	is	to	use	80%	of	the	data	for	training	and	20%	for
testing	purposes,	so	that	it’s	very	simple	to	test	or	evaluate	a	model.

	

Overfitting	the	Data	
If	you're	in	a	foreign	country	and	someone	steals	something	of	yours,	you	might
say	that	everyone	is	a	thief.	This	is	an	overgeneralization,	and,	in	machine
learning,	is	called	“overfitting”.	This	means	that	machines	do	the	same	thing:
they	can	perform	well	when	they're	working	with	the	training	data,	but	they	can't
generalize	them	properly.		For	example,	in	the	following	figure	you'll	find	a	high
degree	of	life	satisfaction	model	that	overfits	the	data,	but	it	works	well	with	the
training	data.

	

When	does	this	occur?

Overfitting	occurs	when	the	model	is	very	complex	for	the	amount	of	training
data	given.

	

Solutions
To	solve	the	overfitting	problem,	you	should	do	the	following:

-								Gather	more	data	for	“training	data”
-								Reduce	the	noise	level
-								Select	one	with	fewer	parameters

	

	

Underfitting	the	Data
From	its	name,	underfitting	is	the	opposite	of	overfitting,	and	you'll	encounter
this	when	the	model	is	very	simple	to	learn.	For	example,	using	the	example	of
quality	of	life,	real	life	is	more	complex	than	your	model,	so	the	predictions
won't	yield	the	same,	even	in	the	training	examples.

Solutions
To	fix	this	problem:

-								Select	the	most	powerful	model,	which	has	many	parameters.	
-								Feed	the	best	features	into	your	algorithm.	Here,	I'm	referring	to	feature
engineering.
-								Reduce	the	constraints	on	your	model.

	

	

	

	

	

	

EXERCISES
	

In	this	chapter,	we	have	covered	many	concepts	of	machine	learning.	The
following	chapters	will	be	very	practical,	and	you'll	write	code,	but	you	should
answer	the	following	questions	just	to	make	sure	you're	on	the	right	track.	

	

1.	 Define	machine	learning
	
	
2.	 Describe	the	four	types	of	machine-learning	systems.
	
	
	
3.	 What	is	the	difference	between	supervised	and	unsupervised	learning.
	
	
4.	 Name	the	unsupervised	tasks.
	
	
	
5.	 Why	are	testing	and	validation	important?
	
	
6.	 In	one	sentence,	describe	what	online	learning	is.
	
	
	
7.	 What	is	the	difference	between	batch	and	offline	learning?
	
	
8.	 Which	type	of	machine	learning	system	should	you	use	to	make	a

robot	learn	how	to	walk?
	

SUMMARY

	
In	this	chapter,	you've	learned	many	useful	concepts,	so	let’s	review	some
concepts	that	you	may	feel	a	bit	lost	with.	Machine	learning:	ML	refers	to
making	machines	work	better	at	some	task,	using	given	data.

	

	

.		Machine	learning	comes	in	many	types,	such	as	supervised,	batch,
unsupervised,	and	online	learning.

	

	

.	To	perform	an	ML	project,	you	need	to	gather	data	in	a	training	set,	and	then
feed	that	set	to	a	learning	algorithm	to	get	an	output,	“predictions”.

	

	

	

.		If	you	want	to	get	the	right	output,	your	system	should	use	clear	data,	which	is
not	too	small	and	which	does	not	have	irrelevant	features.

REFERENCES
.
http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/35179.pdf

	

http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/35179.pdf

CHAPTER	2

CLASSIFICATION
	

Installation
You'll	need	to	install	Python,	Matplotlib	and	Scikit-learn	for	this	chapter.	Just	go
to	the	references	section	and	follow	the	steps		indicated.

	

The	MNIST
In	this	chapter,	you'll	go	deeper	into	classification	systems,	and	work	with	the
MNIST	data	set.	This	is	a	set	of	70,000	images	of	digits	handwritten	by	students
and	employees.	You'll	find	that	each	image	has	a	label	and	a	digit	that	represents
it.		This	project	is	like	the	“Hello,	world”	example	of	traditional	programming.
So	every	beginner	to	machine	learning	should	start	with	this	project	to	learn
about	the	classification	algorithm.	Scikit-Learn	has	many	functions,	including
the	MNIST.	Let’s	take	a	look	at	the	code:

>>>	from	sklearn.data	sets	import	fetch_mldata
>>>	mn=	fetch_mldata('MNIST	original')
>>>	mn
{'COL_NAMES':	['label',	'data'],
'Description':	'mldata.org	data	set:	mn-original',
'data':	array([[0,	0,	0,...,	0,	0,	0],
[0,	0,	0,...,	0,	0,	0],
[0,	0,	0,...,	0,	0,	0],
...,
[0,	0,	0,...,	0,	0,	0],
[0,	0,	0,...,	0,	0,	0],
[0,	0,	0,...,	0,	0,	0]],	dataType=uint8),
'tar':	array([0.,	0.,	0.,...,	9.,	9.,	9.])}	de

.	Description	is	a	key	that	describes	the	data	set.

.	The	data	key	here	contains	an	array	with	just	one	row	for	instance,	and	a
column	for	every	feature.

.	This	target	key	contains	an	array	with	labels.

Let’s	work	with	some	of	the	code:

>>>	X,	y	=	mn["data"],	mn["tar"]
>>>	X.shape
(70000,	784)
>>>	y.shape
(70000,)

.	7000	here	means	that	there	are	70,000	images,	and	every	image	has	more	than

700	features:	“784”.	Because,	as	you	can	see,		every	image	is	28	x	28	pixels,	you
can	imagine	that	every	pixel	is	one	feature.

	

Let’s	take	another	example	from	the	data	set.		You'll	only	need	to	grab	an
instance’s	feature,	then	make	it	26	x	26	arrays,	and	then	display	them	using	the
imshow	function:

%matplotlib	inline
import	matplotlib
import	matplotlib.pyplot	as	plt
yourDigit	=	X[36000]
Your_image	=	your_image.reshape(26,	26)
plt.imshow(Your_image,	cmap	=	matplotlib.cm.binary,
interpolation="nearest")
plt.axis("off")
plt.show()

As	you	can	see	in	the	following	image,	it	looks	like	the	number	five,	and	we	can
give	that	a	label	that	tells	us	it’s	five.

	

In	the	following	figure,	you	can	see	more	complex	classification	tasks	from	the
MNIST	data	set.

Also,	you	should	create	a	test	set	and	make	it	before	your	data	is	inspected.

The	MNIST	data	set	is	divided	into	two	sets,	one	for	training	and	one	for	testing.

x_tr,	x_tes,	y_tr,	y_te	=	x	[:60000],	x[60000:],	y[:60000],	y[60000:]

Let’s	play	with	your	training	set	as	follows	to	make	the	cross-validation	to	be
similar	(without	any	missing	of	any	digit)

Import	numpy	as	np

myData	=	np.radom.permutaion(50000)

x_tr,	y_tr	=	x_tr[myData],	y_tr[myData]

	

Now	it’s	time	to	make	it	simple	enough,	we'll	try	to	just	identify	one	digit,	e.g.
the	number	6.	This	“6-detector”	will	be	an	example	of	the	binary	classifier,	to
distinguish	between	6	and	not	6,	so	we'll	create	the	vectors	for	this	task:

Y_tr_6	=	(y_tr			==	6)	//	this	means	it	will	be	true	for	6s,	and	false	for	any	other
number

Y_tes_6	=	(Y_tes	==	6)

After	that,	we	can	choose	a	classifier	and	train	it.	Begin	with	the		SGD
(Stochastic	Gradient	Descent)	classifier.

The	Scikit-Learn	class	has	the	advantage	of	handling	very	large	data	sets.	In	this
example,	the	SGD	will	deal	with	instances	separately,	as	follows.

from	sklearn.linear_model	import	SGDClassifier

mycl	=	SGDClassifier	(random_state	=	42)

mycl.fit(x_tr,	y_tr_6)

to	use	it	to	detect	the	6

>>>mycl.prdict([any_digit)]

Measures	of	Performance
If	you	want	to	evaluate	a	classifier,	this	will	be	more	difficult	than	a	regressor,	so
let’s	explain	how	to	evaluate	a	classifier.

In	this	example,	we'll	use	across-validation	to	evaluate	our	model.	

from	sklearn.model_selection	import	StratifiedKFold

form	sklearn.base	import	clone

sf	=	StratifiedKFold(n=2,	ran_state	=	40)

for	train_index,	test_index	in	sf.split(x_tr,	y_tr_6):

cl	=	clone(sgd_clf)

x_tr_fd	=	x_tr[train_index]

y_tr_fd	=	(y_tr_6[train_index])

x_tes_fd	=	x_tr[test_index]

y_tes_fd	=	(y_tr_6[test_index])

cl.fit(x_tr_fd,	y_tr_fd)

y_p	=	cl.predict(x_tes_fd)

print(n_correct	/	len(y_p))

.	We	use	the	StratifiedFold	class	to	perform	stratified	sampling	that	produces
folds	that	contain	a	ration	for	every	class.	Next,	every	iteration	in	the	code	will
create	a	clone	of	the	classifier	to	make	predictions	on	the	test	fold.	And	finally,	it
will	count	the	number	of	correct	predictions	and	their	ratio

	

.	Now	we'll	use	the	cross_val_score	function	to	evaluate	the	SGDClassifier	by
K-fold	cross	validation.	The	k	fold	cross	validation	will	divide	the	training	set
into	3	folds,	and	then	it	will	make	prediction	and	evaluation	on	each	fold.

from	sklearn.model_selection	import	cross_val_score

cross_val_score(sgd_clf,	x_tr,	y_tr_6,	cv	=	3,	scoring	=	“accuracy”)

	You'll	get	the	ratio	of	accuracy	of	“correct	predictions”	on	all	folds.

	

Let’s	classify	every	classifier	at	every	single	image	in	the	not-6

from	sklearn.base	import	BaseEstimator

class	never6Classifier(BaseEstimator):

def	fit(self,	X,	y=None):

		pass

def	predict(self,	x):

return	np.zeros((len(X),	1),	dtype=bool)

Let’s	examine		the	accuracy	of	this	model	with		the	following	code:

>>>	never_6_cl	=	Never6Classifier()

>>>	cross_val_score(never_6_cl,	x_tr,	y_tr_6,	cv	=	3,	scoring	=	“accuracy”)

Output:	array	([“num”,	“num”,	“num”])

For	the	output,	you'll	get	no	less	than	90%:	only	10%	of	the	images	are	6s,	so	we
can		always	imagine	that	an	image	is	not	a	6.	We'll	be	right	about	90%	of	the
time.

Bear	in	mind	that	accuracy	is	not	the	best	performance	measure	for	classifiers,	if
you're	working	with	skewed	data	sets.

	

Confusion	Matrix
There	is	a	better	method	to	evaluate	the	performance	of	your	classifier:	the
confusion	matrix.

It’s	easy	to	measure	performance	with	the	confusion	matrix,	just	by	counting	the
number	of	times	instances	of	class	X	are	classified	as	class	Y,	for	example.	To
get	the	number	of	times	of	image	classifiers	of	6s	with	2s,	you	should	look	in	the
6th	row	and	2nd	column	of	the	confusion	matrix.

	

Let’s	calculate	the	confusion	matrix	using	the	cross_val_predict	()	function.

from	sklearn.model_selection	import	cross_Val_predict

y_tr_pre	=	cross_val_predict	(sgd_cl,	x_tr,	y_tr_6,	cv	=	3)

This	function,	like	the	cross_val_score()	function,	performs	the	k	fold	cross-
validation,	and	it	also	returns	predictions	on	each	fold.	It	also	returns	a	clean
prediction	for	every	instance	in	your	training	set.

	

Now	we're	ready	to	get	the	matrix	using	the	following	code.

from	sklearn.metrics	import	confusion_matrix

confusion_matrix	(y_tr_6,	y_tr_pred)

You'll	get	an	array	of	4	values	,“numbers”.

Every	row	represents	a	class	in	the	matrix,	and	every	column	represents	a
predicted	class.

The	first	row	is	the	negative	one:	that		“contain	non-6	images”.	You	can	learn	a
lot	from	the	matrix.

But	there	is	also	a	good	one	that's	,	interesting	to	work	with	if	you'd	like	to	get
the	accuracy	of	the	positive	predictions,	which	is	the	precision	of	the	classifier
using	this	equation.

Precision	=	(TP)/	(TP+FP)

TP:	number	of	true	positives

FP:	number	of	false	positives

Recall	=	(TP)	/(TP+FN)	“sensitivity”:		it	measure	the	ratio	of	positive	instances.

	

Recall
>>>	from	sklearn.metrics	import	precision_score,	recall_score

>>>	precision_score(y_tr_6,	y_pre)

>>>recall_score(y_tr_6,	y_tr_pre)

It’s	very	common		to	combine	precision	and	recall	into	just	one	metric,	which	is
the	F1	score.

F1	is	the	mean	of	both	precision	and	recall.	We	can	calculate	the	F1	score		with
the	following	equation:

F1	=	2	/	((1/precision)	+	(1)/recall))	=	2	*	(precision	*	recall)	/	(precision	+
recall)	=	(TP)	/	((TP)	+	(FN+FP)/2)

To	calculate	the	F1	score,	simply	use	the	following	function:

>>>	from	sklearn.metrics	import	f1_score

>>>f1_score	(y_tr_6,	y_pre)

	

	

	

Recall	Tradeoff
To	get	to	this	point,	you	should	take	a	look	at	the	SGDClassifier	and	how	it
makes	decisions	regarding	classifications.	It	calculates	the	score	based	on	the
decision	function,	and	then	it	compares	the	score	with	the	threshold.	If	it’s
greater	than	this	score,	it	will	assign	the	instance	to	the	“positive	or	negative”.
class

For	example,	if	the	decision	threshold	is	at	the	center,	you'll	find	4	true	+	on	the
right	side	of	the	threshold,	and	only	one	false.	So	the	precision	ratio	will	be	only
80%.

	

In	Scikit-Learn,	you	can't	set	a	threshold	directly.	You'll	need	to	access	the
decision	scores,	which	use	predictions,	and	by		y	calling	the	decision	function,
().

>>>	y_sco	=	sgd_clf.decision_funciton([any	digit])

>>>	y_sco

>>>	threshold	=	0

>>>y_any_digit_pre	=	(y_sco	>	threshold)

In	this	code,	the	SGDClassifier	contains	a	threshold,	=	0,	to	return	the	same
result	as	the	the	predict	()	function.

>>>	threshold	=	20000

>>>y_any_digit_pre	=	(y_sco	>	threshold)

>>>y_any_digit_pre

This	code	will	confirm	that,	when	the	threshold	increases,	the	recall	decreases.

y_sco	=	cross_val_predict	(sgd_cl,	x_tr,	y_tr_6,	cv	=3,	method=”decision
function)

It’s	time	to	calculate	all	possible	precision	and	recall	for	the	threshold	by	calling
the	precision_recall_curve()function

from	sklearn.metrics	import	precision_recall_curve

precisions,	recalls,	threshold	=	precision_recall_curve	(y_tr_6,	y_sco)

and	now	let’s	plot	the	precision	and	the	recall	using	Matplotlib

def	plot_pre_re(pre,	re,	thr):

plt.plot(thr,	pre[:-1],	“b—“,	label	=	“precision”)

plt.plot(thr,	re[:1],	“g-“,	label=”Recall”)

plt.xlabel(“Threshold”)

plt.legend(loc=”left”)

plt.ylim([0,1])

plot_pre_re(pre,	re,	thr)

plt.show

ROC
ROC	stands	for	receiver	operating	characteristic	and	it's	a	tool	that	used	with
binary	classifiers.													

This	tool	is	similar	to	the	recall	curve,	but	it	doesn’t	plot	the	precision	and	recall:
it	plots	the	positive	rate

and	false	rate.	You'll	work	also	with	FPR,	which	is	the	ratio	of	negative
samples.		You	can	imagine	if	it's	like	(1	–	negative	rate.	Another	concept	is	the
TNR	and	it's	the	specificity.	Recall	=	1	–	specificity.

Let’s	play	with	the	ROC	Curve.	First,	we'll	need	to	calculate	the	TPR	and	the
FPR,	just	by	calling	the	roc-curve	()	function,

from	sklearn.metrics	import	roc_curve

fp,tp,	thers	=	roc_curve	(y_tr_6,	y_sco)

After	that,	you'll	plot	the	FPR	and	TPR	with	Matplotlib	according	to		the
following	instructions.

def_roc_plot	(fp,	tp,	label=none):

plt.plot(fp,	tp,	linewidth=2,	label	=	label)

plt.plot([0,1)],	[0,1],	“k--”)

plt.axis([0,1,0,1])

plt.xlabel(‘This	is	the	false	rate’)

plt.ylabel(‘This	is	the	true	rate’)

roc_plot	(fp,	tp)

plt.show

	

Multi-class	Classification
We	use	binary	classifiers	to	distinguish	between	any	two	classes,	but	what	if
you'd	like	to	distinguish	between	more	than	two?

You	can	use	something	like	random	forest	classifiers	or	Bayes	classifiers,	which
can	compare	between	more	than	two.	But,	on	the	other	hand,	SVM	(the	Support
Vector	Machine)	and	linear	classifiers	function	like	binary	classifiers.

If	you'd	like	to	develop	a	system	that	classifies	images	of	digit	into	12	classes
(from	0	to	11)	you'll	need	to	train	12	binary	classifiers,	and	make	one	for	every
classifier	(such	as	4	–	detector,	5-detector,	6-detector	and	so	on),	and	then	you'll
need	to	get	the	DS,	the	“	decision	score,”	of	every	classifier	for	the	image.	Then,
you'll	choose	the	highest	score	classifier.	We	call	this	the	OvA	strategy:	“one-
versus-all.”

The	other	method	is	to	train	a	binary	classifier	for	each	pair	of	digits;	for
example,	one	for	5s	and	6s	and	another	one	for	5s	and	7s.	—	we	call	this	method
OvO,	“one-versus-one”	—	to	count	how	many	classifiers	you'll	need,	based	on
the	number	of	classes	that	use	the	following	equation:	“N	=	number	of	classes”.

N	*	(N-1)/2.	If	you'd	like	to	use	this	technique	with	the	MNIST	10	*	(10-1)/2,
the	output	will	be	45	classifiers,	“binary	classifiers”.

In	Scikit-Learn,	you	execute	OvA		automatically	when	you	use	a	binary
classification	algorithm.

>>>	sgd_cl.fit(x_tr,	y_tr)

>>>sgd_cl.Predict([any-digit])

Additionally,	you	can	call	the	decision_function	()	to	return	the	scores	“10	scores
for	one	class”

>>>any_digit_scores	=	sgd_cl.decision_function([any_digit])

>>>	any_digit_scores

Array([“num”,	“num”,	“num”,	“num”,	“num”,	“num”,	“num”,	“num”,	“num”
,”num”]])

	

Training	a	Random	Forest	Classifier
>>>	forest.clf.fit(x_tr,	y_tr)

>>>	forest.clf.predict([any-digit])

array([num])

As	you	can	see,		training	a	random	forest	classifierwth	only	two	lines	of	code	is
very	easy.

The	Scikit-Learn	didn’t	execute	any	OvA	or	OvO	functions	because	this	kind	of
algorithm	—		“random	forest	classifiers”	—		can	automatically	work	multiple
classes.	If	you'd	like	to	take	a	look	at	the	list	of	classifier	possibilities,	you	can
call	the	predict_oroba	()	function.

>>>	forest_cl.predict_proba([any_digit])

array([[0.1,	0,	0,	0.1,	0,	0.8,	0,	0,	0]])

The	classifier	is	very	accurate	with	its	prediction,	as	you	can	see	in	the	output;
there	is	0.8	at		index	number	5.

Let’s	evaluate	the	classifier	using	the	cross_val_score()	function.

>>>	cross_val_score(sgd_cl,	x_tr,	y_tr,	cv=3,	scoring	=	“accuracy”)

array([0.84463177,	0.859668,	0.8662669])

You'll	get	84%	more		n	the	folds.	When	using	a	random	classifier,	you'll	get,	in
this	case,	10%	for	the	accuracy	score.	Keep	in	mind	that	the	higher	this	value	is,
the	better.

	

Error	Analysis
First	of	all,	when	developing	a	machine	learning	project:

1.	 Determine	the	problem;
2.	 Collect	your	data;
3.	 Work	on	your	data	and	explore	it;
4.	 Clean	the	data
5.	 Work	with	several	models	and	choose	the	best	one;
6.	 Combine	your	models	into	the	solution;
7.	 Show	your	solution;
8.	 Execute	and	test	your	system.
	
	
First,	you	should	work	with	the	confusion	matrix	and	make	predictions	by
the	cross-val	function.	Next,	you'll	call	the	confusion	matrix	function:
	
>>>	y_tr_pre	=	cross_val_prediciton(sgd_cl,	x_tr_scaled,	y_tr,	cv=3)
>>>	cn_mx		=	confusion_matrix(y_tr,	y_tr_pre)
>>>	cn_mx
	

array([[5625,	2,	25,	8,	11,	44,	52,	12,	34,	6],

[2,	2415,	41,	22,	8,	45,		10,	10,	9],

[52,	43,	7443,	104,	89,	26,	87,	60,	166,	13],

[47,	46,	141,	5342,	1,	231,	40,	50,	141,	92],

[19,	29,	41,	10,	5366,	9,	56,	37,	86,	189],

[73,	45,	36,	193,	64,	4582,	111,	30,	193,	94],

[29,	34,	44,	2,	42,	85,	5627,	10,	45,	0],

[25,	24,	74,	32,	54,	12,	6,	5787,	15,	236],

[52,	161,	73,	156,	10,	163,	61,	25,	5027,	123],

[50,	24,	32,	81,	170,	38,	5,	433,	80,	4250]])

	

	

	

Plt.matshow(cn_mx,	cmap=plt.cm.gray)

Plt.show()

	

	

First,	you	should	divide	every	value	in	the	matrix	by	the	number	of	images	in	the
class,	and	then	you'll	compare	the	error	rates.

rw_sm	=	cn_mx.sum(axis=1,	keepdims=True)

nm_cn_mx	=	cn_mx	/	rw_sum

The	next	step	is	to	make	all	the	zeros	on	the	diagonal,	and	that	will	keep	the
errors	from	occurring.

np.fill_diagonal	(nm_cn_mx,	0)

plt.matshow(nm_cn_mx,	cmap=plt.cm.gray)

plt.show()

The	errors	are	easy	to	spot	in	the	above	schema.		One	thing	to	keep	in	mind	is
that	the	rows	represent	classes	and	the	columns	represent	the	predicted	values.	

	

	

Multi-label	Classifications
	

In	the	above	examples,	every	class	has	just	one	instance.	But	what	if	we	want	to
assign	the	instances	to	multiple	classes	—		face	recognition,	for	example.
Suppose	that	you'd	like	to	find	more	than	one	face	in	the	same	photo.	There	will
be	one	label	for	each	face.	Let's	practice	with	a	simple	example.

y_tr_big	=	(y_tr	>=	7)

y_tr_odd	=	(y_tr	%2	==1)

y_multi	=	np.c	[y_tr_big,	y_tr_odd]

kng_cl	=	KNeighborsClassifier()

kng_cl.fit	(x_tr,	y_m,ulti)

In	these	instructions,	we	have	created	a	y_mullti	array	that	contains	two	labels
for	every	image.

And	the	first	one	contains	information	on	whether	the	digit	is	“big”	(8,9,.),	and
the	second	one	checks	if	it's	odd	or	not.

	

Next,	we'll	make	a	prediction	using	the	following	set	of	instructions.

>>>kng_cl.predict([any-digit])

Array([false,	true],	dataType=bool)

	

True	here	means	that	it's		odd	and	false,	that	it's		not	big.

	

Multi-output	Classification
	

At	this	point,	we	can	cover	the	final	type	of	classification	task,	which	is	the
multi-output	classification.

It’s	just	a	general	case	of	multi-label	classification,	but	every	label	will	have	a
multiclass.	In	other	words,	it	will	have	more	than	one	value.

Let’s	make	it	clear	with	this	example,	using	the	MNIST	images,	and	adding
some	noise	to	the	image	with	the	NumPy	functions.	

No	=	rnd.randint	(0,	101,	(len(x_tr),	785)))

No	=	rnd.randint(0,	101,	(len(x_tes),	785))

x_tr_mo	=	x_tr	+	no

x_tes_mo	=	x_tes	+	no

y_tr_mo	=	x_tr

y_tes_mo	=	x_tes

kng_cl.fit(x_tr_mo,	y_tr_mo)

cl_digit	=	kng_cl.predict(x_tes_mo[any-index]])

plot_digit(cl_digit)

	

EXERCISES
	

	

1.	 Construct	a	classifier	for	the	MNIST	data	set	.	Try	to	get	more	than
96%	accuracy	on	your	test	set.

	

	

2.	 Write	a	method	to	shift	an	image	from	the	MNIST	(right	or	left)		by	2
pixels.

	

	

3.	 Develop	your	own	anti-spam	program	or	classifier.
	

	
-								Download	examples	of	spam	from	Google.

	

-								Extract	the	data	set.
	

	

-								Divide	the	data	set	into	training	for		a	test	set.
	

-								Write	a	program	to	convert	every	email	to	a	feature	vector.
	

	

-								Play	with		the	classifiers,	and	try	to	construct	the	best	one	possible,	with
high		values	for	recall	and	precision.	

SUMMARY
	

In	this	chapter,	you've	learned	useful		new	concepts	and	implemented	many
types	of	classification	algorithms.	You've	also	worked	with	new	concepts,	like	:

	

	

-								ROC:		the	receiver	operating	characteristic,	the	tool	used	with	binary
classifiers.														

	

-								Error	Analysis:	optimizing	your	algorithms.
	

	

	

-		How	to	train	a	random	forest	classifier	using	the	forest	function	in	Scikit-
Learn.

	

	

	

-								Understanding	Multi-Output	Classification.
	

	

	

-								Understanding	multi-Label	classifications.
	

	

	

	

	

REFERENCES
	

	

http://scikit-learn.org/stable/install.html

	

https://www.python.org

	

https://matplotlib.org/2.1.0/users/installing.html

	

http://yann.lecun.com/exdb/mnist/

	

	

	

	

	

	

	

http://scikit-learn.org/stable/install.html
https://www.python.org
https://matplotlib.org/2.1.0/users/installing.html
http://yann.lecun.com/exdb/mnist/

CHAPTER	3

HOW	TO	TRAIN	A	MODEL
After	working	with	many	machine	learning	models	and	training	algorithms,
which	seem	like	unfathomable	black	boxes.	we	were	able	to	optimize	a
regression	system,	have	also	worked	with	image	classifiers.	But	we	developed
these	systems	without	understanding	what's	s	inside	and	how	they	work,	so	now
we	need	to	go	deeper	so	that	we	can	grasp	how	they	work	and	understand	the
details	of	implementation.

Gaining	a	deep	understanding	of	these	details	will	help	you	with	the	right	model
and	with	choosing	the	best	training	algorithm.	Also,	it	will	help	you	with
debugging	and	error	analysis.

In	this	chapter,	we'll	work	with	polynomial	regression,	which	is	a	complex
model	that	works	for	nonlinear	data	sets.	In	addition,	we'll	working	with	several
regularization	techniques	that	reduce	training	that	encourages	overfitting.

	

Linear	Regression
As	an	example,	we'll	take	l_S	=	θ0	+	θ1	×	GDP_per_cap.	This	is	a	simple	model
for	a	linear	function	of	the	input	feature	,“GPD_per_cap”.	(θ0	and	θ1)	are	the
parameters	of	the	model,

In	general,	you'll	use		a	linear	model	to	make	a	prediction	by	calculating	a
weighted	sum	of	the	input	features,	and	also	a	constant	“bias,”	as	you	can	see	in
the	following	equation.

.	Y	is	the	value	of	the	predictor.

.	N	represents	the	features

.	X1	is	the	value	of	the	feature.

.	Θj	is	the	model	parameter	of	j	theta.

Also,	we	can	write	the	equation	in	vectorized	form,	as	in	the	following	example:

	

.	Θ	is	the	value	that	minimizes	the	cost.

.	Y	contains	the	values	y	(1)	to	y	(m).

	

Let’s	write	some	code	to	practice.

Import	numpy	as	np

V1_x	=	2	*	np.random.rand	(100,	1)

V2_y	=	4	+	3	*	V1_x	+	np.random.randn	(100,	1)

	

	

	

After	that,	we'll	calculate	Θ	value	using	our	equation.	It's	time	to	use	the	inv()
function	from	our	linear	algebra	module	of	numpy	(np.linalg)to	calculate	the
inverse	of	any	matrix,	and	also,	the	dot()	function	for	multiply	our	matrix

Value1	=	np.c_[np.ones((100,	1)),		V1_x]

myTheta	=	np.linalg.inv(Value1.T.dot(Value1)).dot(Value1.T).dot(V2_y)

>>>myTheta	

Array([[num],	[num]])

This	function	uses	the	following	equation	—		y	=	4	+	3x	+	noise	“Gaussian”	—	
to	generate	our	data.

Now	let’s	make	our	predictions.

>>>V1_new	=	np.array([[0],[2]])

>>>V1_new_2	=	np.c_[np.ones((2,1)),	V1_new]

>>>V2_predicit	=	V1_new_2.dot(myTheta)

>>>V2_predict

Array([[4.219424],	[9.74422282]])

Now,	it’s	time	to	plot	the	model.

Plt.plot(V1_new,	V2_predict,	“r-“)

Plt.plot(V1_x,	V2_y,	“b.”)

Plt.axis([0,2,0,15])

Plt.show()

	

Computational	Complexity
With	the	normal	formula,	we	can	compute	the	inverse	of	M^T.	M	—		that	is,	a
n*n	matrix	(n	=	the	number	of	features).	The	complexity	of	this	inversion	is
something	like	O(n^2.5)	to	O(n^3.2),	which	is	based	on	the	implementation.
Actually,	if	you	make	the	number	of	features	like	twice,	you'll	make	the	time
of	the	computation	attain	between	2^2.5	and	2^3.2.

The	great	news	here	is	that	the	equation	is	a	linear	equation.	This	means	It	can
easily	handle	huge	training	sets	and	fit	the	memory	in.

	

After	training	your	model,	the	predictions	will	be	not	slow,	and	the	complexity
will	be	simple,	thanks	to	the	linear	model.	It’s	time	to	go	deeper	into	the	methods
of	training	a		linear	regression	model,	which	is	always	used	when	there	is	a	large
number	of	features	and	instances	in	the	memory.

Gradient	Descent
This	algorithm	is	a	general	algorithm	that	is	used	for	optimization	and	for
providing	the	optimal	solution	for	various	problems.	The	idea	of	this	algorithm
is	to	work	with	the	parameters	in	an	iterative	way,	to	make	the	cost	function	as
simple	as	possible.

The	gradient	descent	algorithm	calculates	the	gradient	of	the	error	using	the
parameter	theta,	and	it	works	with	the	method	of	descending	gradient.	If	the
gradient	is	equal	to	zero,	you'll	reach	the	minimum.

	

	

	

	

Also,	you	should	keep	in	the	mind	that	the	size	of	the	steps	is	very	important	for
this	algorithm,	because	if	it's	very	small	–		“meaning	the	rate	of	learning”	is	slow
–	it	will	take	a	long	time	to	cover	everything	that	it	needs	to.

	

	

But	when	the	rate	of	learning	is	high,	It	will	take	short	time	to	cover	what’s
needed,	and	it	will	provide	an	optimal	solution.

At	the	end,	you	won't	always	find	that	all	cost	functions	are	easy,	as	you	can	see,
but	you'll	also	find	irregular	functions	that	make	getting	an	optimal	solution	very
difficult.	This	problem	occurs	when	the	local	minimum	and	global	minimum
looks	like	they	do	in	the	following	figure.

	

If	you	assign	any	to	any	two	points	on	your	curve,	you'll	find	that	the	segment	of
the	line	won't	join	them	on	the	same	curve.	This	cost	function	will	look		like	a
bowl,	which	will	occur	if	the	features	have	many	scales,	as	n	the	following
image

	

Batch	Gradient	Descent
If	you'd	like	to	implement	this	algorithm,	you	should	first	calculate	the	gradient
of	your	cost	function	using	the	theta	parameter.	If	the	value	of	the	parameter
theta	has	changed,	you’ll	need	to	know	the	changing	rate	of	your	cost	function.	
We	can			call	this	change	by	a	partial	derivative

We	can	calculate	the	partial	derivative	using	the	following	equation:

	

But	we`ll	also	use	the	following	equation	to	calculate	the	partial	derivatives	and
the	gradient	vector	together.

	

	

Let’s	implement	the	algorithm.

Lr	=	1	#	Lr	for	learning	rate

Num_it	=	1000	#	number	of	iterations

L	=	100

myTheta	=	np.random.randn	(2,1)

for	it	in	range(Num_it):

gr	=	2/L	*	Value1.T.dot(Value1.dot(myTheta)	–	V2_y)

myTheta	=	myTheta	–	Lr	*	gr

>>>	myTheta

Array([[num],[num]])

If	you	try	to	change	the	learning	rate	value,	you'll	get	different	shapes,	as	in	the
following	figure.

	

Stochastic	Gradient	Descent
You'll	find	a	problem	when	you’re	using	the	batch	gradient	descent:	it	needs	to
use	the	whole	training	set	in	order	to	calculate	the	value	at	each	step,	and	that
will	affect	performance	“speed”.

But	when	using	the	stochastic	gradient	descent,	the	algorithm	will	randomly
choose	an	instance	from	your	training	set	at	each	step,	and	then	it	will	calculate
the	value.	In	this	way,	the	algorithm	will	be	faster	than	the	batch	gradient
descent,	since	it	doesn’t	need	to	use	the	whole	set	to	calculate	the	value.	On	the
other	hand,	because	of	the	randomness	of	this	method,	it	will	be	irregular	when
compared		to	the	batch	algorithm.

	

Let’s	implement	the	algorithm.

Nums	=	50

L1,	L2	=	5,	50

Def	lr_sc(s):

				return	L1	/	(s	+	L2)

myTheta	=	np.random.randn(2,1)

for	Num	in	range	(Nums):

for	l	in	range	(f)

myIndex	=	np.random.randint(f)

V1_Xi	=	Value1[myIndex:myIndex+1]

V2_yi	=	V2_y[myIndex:myIndex+1]

gr	=	2	*	V1_xi.T.dot(V1_xi.dot(myTheta)	–	V2_yi)

Lr	=	lr_sc(Num	*	f	+	i)

myTheta	=	myTheta	–	Lr	*	gr

>>>	myTheta

Array	([[num],	[num]])

	

	

Mini-Batch	Gradient	Descent
Because	you	already	know	the	batch	and	the	stochastic	algorithms,	this	kind	of
algorithms	is	very	easy	to	understand	and	work	with	.	As	you	know,	both
algorithms	calculate	the	value	of	the	gradients,	based	on	the	whole	training	set	or
just	one	instance.	However,	the	mini-batch	calculates	its	algorithms	based	on
small	and	random	sets,	and		performs	better	than	the	other	two	algorithms.

	

	

	

Polynomial	Regression
We’ll	use	this	technique	when	working	with	more	complex	data,	especially,	in
the	case	of		linear	and	nonlinear	data.	After	we’ve	added	the	powers	of	every
feature,	we	can	train	the	model	with	new	features.	This	is	known	as	polynomial
regression.

Now,	let’s	write	some	code.

L	=	100

V1	=	6*np.random.rand(L,	1)	–	3

V2	=	0.5	*	V1**2	+	V1	+	2	+	np.random.randn(L,	1)

	

	

	

	

As	you	can	see.	the	straight	will	never	represent	the	data	in	the	most	efficient
way.	So	we'll	use	the	polynomial	method	to	work	on	this	problem.

>>>from	sklearn.preprocession	import	PolynomialFeatures

>>>P_F	=	PolynomialFeatures(degree	=	2,	include_bias=False)

>>>V1_P	=	P_F.fit_transform(V1)

>>>V1[0]

Array([num])

>>>V1_P[0]

Now,	let’s	make	this	function	properly	with	our	data,	and	change	the	straight
line.

>>>	ln_r	=	LinearRegression()

>>>ln_r.fit(V1_P,	V2)

>>>ln_r.intercept_,	ln_r.coef

	

	

Learning	Curves
Assume	that	you’re	work	with	polynomial	regression,		and	you	want	it	to	fit	the
data	better	than	with	the	linear	one	.	In	the	following	image,	you’ll	find	a	300-
degree	model	.	We	can	also	compare	the	final	result	with	the	other	kind	of	the
regression:	“normal	linear”.

In	the	above	figure,	you	can	see	the	overfitting	of	data	when	you’re	using	the
polynomial.	On	the	other	hand,	with	linear	one,	you	can	see	that	the	data	is
obviously	being	underfitted.

Regularized	Linear	Models
We	have	worked,	in	the	first	and	second	chapters,	on	how	to	reduce	overfitting
by	regularizing	the	model	a	little,	as	an	example,	if	you'd	like	to	regularize	a
polynomial	model.	In	this	case,	to	fix	the	problem,	you	should	decrease	the
number	of	degrees.

	

Ridge	Regression
The	ridge	regression	is	another	version	of	the	linear	regression,	but,	after
regularizing	it	and	adding	weight	to	the	cost	function,	this	makes	it	fit	the	data,
and	even	makes	the	weight	of	the	model	as	simple	as	possible.	Here	is	the	cost
function	of	the	ridge	regression:

	

	

	

As	an	example	of	ridge	regression,	just	take	a	look	at	the	following	figures.

	

Lasso	Regression

	
“Lasso”	regression	stands	for	“Least	Absolute	Shrinkage	and	Selection
Operator”	regression.	This	is	another	type	of	the	regularized	version	of	linear
regression.

	

It	looks	like	ridge	regression,	but	with	a	small	difference	in	the	equation,	as	in
the	following	figures

	

The	cost	function	of	the	lasso	regression:

	

	

As	you	can	see	in	the	following	figure,	the	lasso	regression	uses	smaller	values
than	the	ridge.

	

EXERCISES
	

1.	 If	you	have	a	set	that	contains	a	huge	number	of	features	(millions	of
them),	which	regression	algorithm	should	you	use,	and	why?

	

	

	

2.	 If	you	use	batch	gradient	descent	to	plot	the	error	at	each	period,	and
suddenly	the	rate	of	errors	increases,	how	would	you	fix	this	problem?

	

	

	

3.	 What	should	you	do	if	you	notice	that		errors	become	larger		when	
you’re	using	the	mini-batch	method?	Why?

4.	 From	these	pairs,	which		method	is	better?	Why?	:
	
.		Ridge	regression	and	linear	regression?
	
.		Lasso	regression	and	ridge	regression?
	
	
	
5.	 Write	the	batch	Gradient	descent	algorithm.

	

SUMMARY
	

In	this	chapter,	you've	learned	new	concepts,	and	have	learned	how	to	train	a
model	using	different	types	of	algorithms.	You’ve	also	learned	when	to	use	each
algorithm,	including	the	following:

	

	

-								Batch	gradient	descent

	

-								Mini-batch	gradient	descent
	

	

-								Polynomial	regression
	

	

-								Regularized	linear	models
							.	Ridge	regression

								.	Lasso	regression

In	addition,	you	now	know	the	meaning	of	certain	terms:	linear	regression,
computational	complexity,	and	gradient	descent.

	

	

REFERENCES
	

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

http://scikit-
learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html

Chapter	4

Different	models	combinations
	

	

	

Tree	classifers.

The	next	image	will	illustrate	the	definition	of	a	general	target	of	collecting
functions	that	is	just	to	merge	different	classifers	into	a	One-classifer	that	has	a
better	generalization	performance	than	each	individual	classifer	alone.
	
As	an	example,	assume	that	you	collected	predictions	from	many	experts.
Ensemble	methods	would	allow	us	to	merge	these	predictions	by	the	lots	of
experts	to	get	a	prediction	that	is	more	proper	and	robust	than	the	predictions	of
each	individual	expert.	As	you	can	see	later	in	this	part,	there	are	many	different
methods	to	create	an	ensemble	of	classifers.	In	this	part,	we	will	introduce	a
basic	perception	about	how	ensembles	work	and	why	they	are	typically
recognized	for	yielding	a	good	generalization	performance.

In	this	part,	we	will	work	with	the	most	popular	ensemble	method	that	uses	the

majority	voting	principle.	Many	voting	simply	means	that	we	choose	the	label
that	has	been	predicted	by	the	majority	of	classifers;	that	is,	received	more	than
50	percent	of	the	votes.	As	an	example,	the	term	here	is	like	vote	refers	to	just
binary	class	settings	only.	However,	it	is	not	hard	to	generate	the	majority	voting
principle	to	multi-class	settings,	which	is	called	plurality	voting.	After	that,	we
will	choose	the	class	label	that	received	the	most	votes.	The	following	diagram
illustrates	the	concept	of	majority	and	plurality	voting	for	an	ensemble	of	10
classifers	where	each	unique	symbol	(triangle,	square,	and	circle)	represents	a
unique	class	label:

Using	the	training	set,	we	start	by	training	m	different	classifers	(C	C	1,	,	…	m).
Based	on	the	method,	the	ensemble	can	be	built	from	many	classification
algorithms;	for	example,	decision	trees,	support	vector	machines,	logistic
regression	classifers,	and	so	on.	In	fact,	you	can	use	the	same	base	classification
algorithm	fitting	different	subsets	of	the	training	set.	An	example	of	this	method
would	be	the	random	forest	algorithm,	which	merges	many	decision	ensemble
ways	using	majority	voting.

To	predict	a	class	label	via	a	simple	majority	or	plurality	voting,	we	combine	the
predicted	class	labels	of	each	individual	classifer	C	j	and	select	the	class	label	yˆ
that	received	the	most	votes:

y	m	ˆ	=	ode{C	C	1	2	()	x	x	,	,	()	…,Cm	()	x	}

For	example,	in	a	binary	classification	task	where	class1	1	=	−	and	class2	1	=	+,
we	can	write	the	majority	vote	prediction.

	

To	illustrate	why	ensemble	methods	can	work	better	than	individual	classifiers
alone,	let's	apply	the	simple	concepts	of	combinatory.	For	the	following
example,	we	make	the	assumption	that	all	n	base	classifiers	for	a	binary
classification	task	have	an	equal	error	rate,	ε.	Additionally,	we	assume	that	the
classifiers	are	independent	and	the	error	rates	are	not	correlated.	As	you	can	see,
we	can	simply	explain	the	error	statistics	of	an	ensemble	of	base	classifiers	as	a
probability.

Mass	function	of	a	binomial	distribution:

Here,	n.	k	is	the	binomial	coefficient	n	choose	k.	As	you	can	see,	you	can
calculate	the	probability	that	the	prediction	of	the	ensemble	is	wrong.	Now,	let's
take	a	look	at	a	more	concrete	example	of	11	base	classifiers	(n	=11)	with	an
error	rate	of	0.25	(ε	=	0.25):

You	can	notice	that	the	error	rate	of	the	ensemble	(0.034)	is	smaller	than	the
error	rate	of	each	individual	classifer	(0.25)	if	all	the	assumptions	are	met.	Note
that	in	this	simplified	image,	a	50-50	split	by	an	even	number	of	classifiers	n	is
treated	as	an	error,	whereas	this	is	only	true	half	of	the	time.	To	compare	such	an
idealistic	ensemble	classifer	to	a	base	classifer	over	a	range	of	different	base
error	rates,	let's	implement	the	probability	mass	function	in	Python:

>>>	import	math

>>>	def	ensemble_error(n_classifier,	error):

...	q_start	=	math.ceil(n_classifier	/	2.0)

...	Probability	=	[comb(n_class,	q)	*

...	error**q	*

...	(1-error)**(n_classifier	-	q)

...	for	q	in	range(q_start,	l_classifier	+	2)]

...	return	sum(Probability)

>>>	ensemble_error(n_classifier=11,	error=0.25)

0.034327507019042969

Let’s	write	some	code	to	compute	the	rates	for	the	different	errors	visualize	the
relationship	between	ensemble	and	base	errors	in	a	line	graph:

>>>	import	numpy	as	np

>>>	error_range	=	np.arange(0.0,	1.01,	0.01)

>>>	en_error	=	[en_er(n_classifier=11,	er=er)

...	for	er	in	er_range]

>>>	import	matplotlib.pyplot	as	plt

>>>	plt.plot(er_range,	en_error,

...	label='Ensemble	error',

...	linewidth=2)

>>>	plt.plot(er_range,	er_range,

...	ls='--',	label='B_	er',

...	linewidth=2)

>>>	plt.xlabel('B_	er')

>>>	plt.label('B/En_er')

>>>	plt.legend(loc='upper	left')

>>>	plt.grid()

>>>	plt.show()

As	we	can	see	in	the	resulting	plot,	the	error	probability	of	an	ensemble	is
always	better	than	the	error	of	an	individual	base	classifer	as	long	as	the	base
classifiers	perform	better	than	random	guessing	(ε	<	0.5).	You	should	notice	that
the	y-axis	depicts	the	base	error	as	well	as	the	ensemble	error	(continuous	line):

	

Implementing	a	simple	majority	classifer
As	we	saw	in	the	introduction	to	merge	learning	in	the	last	section,	we	will	work
with	a	warm-up	training	and	then	develop	a	simple	classifer	for	majority	voting
in	Python	programming.	As	you	can	see,	the	next	algorithm	will	work	on	multi-
class	settings	via	plurality	voting;	you	will	use	the	term	majority	voting	for
simplicity	as	is	also	often	done	in	literature.

In	the	following	program,	we	will	develop	and	also	combine	different
classification	programs	associated	with	individual	weights	for	confidence.	Our
goal	is	to	build	a	stronger	meta-classifer	that	balances	out	the	individual
classifiers'	weaknesses	on	a	particular	dataset.	In	more	precise	mathematical
terms,	we	can	write	the	weighted	majority	vote.

	

To	translate	the	concept	of	the	weighted	majority	vote	into	Python	code,	we	can
use	NumPy's	convenient	argmax	and	bincount	functions:

>>>	import	numpy	as	np

>>>	np.argmax(np.bincount([0,	0,	1],

...	weights=[0.2,	0.2,	0.6]))

1

Here,	pij	is	the	predicted	probability	of	the	jth	classifer	for	class	label	i.	To
continue	with	our	previous	example,	let's	assume	that	we	have	a	binary
classification	problem	with	class	labels	i	∈ {	}	0,1	and	an	ensemble	of	three
classifiers	C	j	(j	∈ {	}	1,2,3).	Let's	assume	that	the	classifer	C	j	returns	the
following	class	membership	probabilities	for	a	particular	sample	x:

C1	()	x	→ 	[]	0.9,0.1	,	C2	()	x	→ 	[]	0.8,0.2	,	C3	()	x	→ 	[]	0.4,0.6

To	implement	the	weighted	majority	vote	based	on	class	probabilities,	we	can
again	make	use	of	NumPy	using	numpy.average	and	np.argmax:

>>>	ex	=	np.array([[0.9,	0.1],

...	[0.8,	0.2],

...	[0.4,	0.6]])

>>>	p	=	np.average(ex,	axis=0,	weights=[0.2,	0.2,	0.6])

>>>	p

array([0.58,	0.42])

>>>	np.argmax(p)

0

Putting	everything	together,	let's	now	implement	a	MajorityVoteClassifier	in
Python:

from	sklearn.base	import	ClassifierMixin

from	sklearn.pre_processing	import	Label_En

from	sklearn.ext	import	six

from	sklearn.ba	import	clone

from	sklearn.pipeline	import	_name_estimators

import	numpy	as	np

import	operator

class	MVClassifier(BaseEstimator,

ClassifierMixin):

"""	A	majority	vote	ensemble	classifier

Parameters

cl	:	array-like,	shape	=	[n_classifiers]

Different	classifiers	for	the	ensemble	vote:	str,	{'cl_label',	'prob'}

Default:	'cl_label'

If	'cl_label'	the	prediction	is	based	on	the	argmax	of	class	labels.	Elif	'prob',	the
arg	of	the	total	of	probs	is	used	to	predict	the	class	label	(recommended	for
calibrated	classifiers).

w	:	arr-like,	s	=	[n_cl]

Optional,	default:	None

If	a	list	of	`int`	or	`float`	values	are	provided,	the	classifiers	are	weighted	by	"""

def	__init__(s,	cl,

v='cl_label',	w=None):

s.cl	=	cl

s.named_cl	=	{key:	value	for

key,	value	in

_name_estimators(cl)}

s.v	=	v

s.w=	w

def	fit_cl(s,	X,	y):

"""	Fit_cl.

Parameters

X	:	{array-like,	sparse	matrix},

s	=	[n_samples,	n_features]

Matrix	of	training	samples.

y	:	arr_like,	sh	=	[n_samples]

Vector	of	target	class	labels.

Returns

s	:	object

"""

#	Use	LabelEncoder	to	ensure	class	labels	start

#	with	0,	which	is	important	for	np.argmax

#	call	in	s.predict

s.l_	=	LabelEncoder()

s.l_.fit(y)

s.cl_	=	self.lablenc_.classes_

s.cl_	=	[]

for	cl	in	s.cl:

fit_cl	=	clone(cl).fit(X,

s.la_.transform(y))

s.cl_.append(fit_cl)

return	s

I	added	a	lot	of	comments	to	the	code	to	better	understand	the	individual	parts.
However,	before	we	implement	the	remaining	methods,	let's	take	a	quick	break
and	discuss	some	of	the	code	that	may	look	confusing	at	first.	We	used	the
parent	classes	BaseEstimator	and	ClassifierMixin	to	get	some	base	functionality
for	free,	including	the	methods	get_params	and	set_params	to	set	and	return	the
classifer's	parameters	as	well	as	the	score	method	to	calculate	the	prediction

accuracy,	respectively.	Also,	note	that	we	imported	six	to	make	the
MajorityVoteClassifier	compatible	with	Python	2.7.

Next,	we	will	add	the	predict	method	to	predict	the	class	label	via	majority	vote
based	on	the	class	labels	if	we	initialize	a	new	MajorityVoteClassifier	object
with	vote='classlabel'.	Alternatively,	we	will	be	able	to	initialize	the	ensemble
classifer	with	vote='probability'	to	predict	the	class	label	based	on	the	class
membership	probabilities.	Furthermore,	we	will	also	add	a	predict_proba	method
to	return	the	average	probabilities,	which	is	useful	to	compute	the	Receiver
Operator	Characteristic	area	under	the	curve	(ROC	AUC).

def	pre(s,	X):

"""	Pre	class	labels	for	X.

Parameters

X	:	{arr-like,	spar	mat},

Sh	=	[n_samples,	n_features]

Matrix	of	training	samples.

Returns

ma_v	:	arr-like,	sh	=	[n_samples]

Predicted	class	labels.

"""

if	se.v	==	'probability':

ma_v	=	np.argmax(spredict_prob(X),

axis=1)

else:	#	'cl_label'	v

predictions	=	np.asarr([cl.predict(X)

for	cl	in

s.cl_]).T

ma_v	=	np.ap_al_ax(

lambda	x:

np.argmax(np.bincount(x,	weights=s.w)),

axis=1,

arr=predictions)

ma_v	=	s.l_.inverse_transform(ma_v)

return	ma_v

def	predict_proba(self,	X):

"""	Prediction	for	X.

Parameters

X	:	{arr-like,	sp	mat},

sh	=	[n_samples,	n_features]

Training	vectors,	where	n_samples	is	the	number	of	samples	and	n_features	is
the	number	of	features.

Returns

av_prob	:	array-like,

sh	=	[n_samples,	n_classes]

Weighted	average	probability	for	each	class	per	sample.

"""

probs	=	np.asarr([cl.predict_prob(X)

for	cl	in	s.cl_])

av_prob	=	np.av(probs,

axis=0,	weights=s.w)

return	av_prob

def	get_ps(self,	deep=True):

"""	Get	classifier	parameter	names	for	GridSearch"""

if	not	deep:

return	super(MVC,

self).get_ps(deep=False)

else:

ou	=	s.n_cl.copy()

for	n,	step	in\

six.iteritems(s.n_cl):

for	k,	value	in	six.iteritems(

step.get_ps(deep=True)):

ou['%s__%s'	%	(n,	k)]	=	value

return	ou

	

	

Combining	different	algorithms	for	classification	with	majority	vote
Now,	it	is	about	time	to	put	the	MVC	that	we	implemented	in	the	previous
section	into	action.	You	should	first	prepare	a	dataset	that	you	can	test	it	on.
Since	we	are	already	familiar	with	techniques	to	load	datasets	from	CSV	files,
we	will	take	a	shortcut	and	load	the	Iris	dataset	from	scikit-learn's	dataset
module.

Furthermore,	we	will	only	select	two	features,	sepal	width	and	petal	length,	to
make	the	classification	task	more	challenging.	Although	our
MajorityVoteClassifier,	or	MVC,	generalizes	to	multiclass	problems,	we	will
only	classify	flower	samples	from	the	two	classes,	Ir-Versicolor	and	Ir-Virginica,
to	compute	the	ROC	AUC.	The	code	is	as	follows:

>>>	import	sklearn	as	sk

>>>	import	sklearn.cross_validation	as	cv

>>>	ir	=	datasets.load_ir()

>>>	X,	y	=	ir.data[50:,	[1,	2]],	ir.target[50:]

>>>	le	=	LabelEncoder()

>>>	y	=	le.fit_transform(y)

Next	we	split	the	Iris	samples	into	50	percent	training	and	50	percent	test	data:

>>>	X_train,	X_test,	y_train,	y_test	=\

...	train_test_split(X,	y,

...	test_size=0.5,

...	random_state=1)

Using	the	training	dataset,	we	now	will	train	three	different	classifiers	—	a
logistic	regression	classifier,	a	decision	tree	classifer,	and	a	k-nearest	neighbors
classifier	—	and	look	at	their	individual	performances	via	a	10	cross-validation

on	the	training	dataset	before	we	merge	them	into	an	ensemble	one:

import	the	following	

sklearn.cross_validation

sklearn.linear_model

sklearn.tree	

sklearn.pipeline

Pipeline

numpy	as	np

>>>	clf1	=	LogisticRegression(penalty='l2',

...	C=0.001,

...	random_state=0)

>>>	clf2	=	DTCl(max_depth=1,

...	criterion='entropy',

...	random_state=0)

	

>>>	cl	=	KNC(n_nb=1,

...	p=2,

...	met='minsk')

>>>	pipe1	=	Pipeline([['sc',	StandardScaler()],

...	['clf',	clf1]])

>>>	pipe3	=	Pipeline([['sc',	StandardScaler()],

...	['clf',	clf3]])

>>>	clf_labels	=	['Logistic	Regression',	'Decision	Tree',	'KNN']

>>>	print('10-fold	cross	validation:\n')

>>>	for	clf,	label	in	zip([pipe1,	clf2,	pipe3],	clf_labels):

...	sc	=	crossVSc(estimator=clf,

>>>	X=X_train,

>>>	y=y_train,

>>>	cv=10,

>>>	scoring='roc_auc')

>>>	print("ROC	AUC:	%0.2f	(+/-	%0.2f)	[%s]"

...	%	(scores.mean(),	scores.std(),	label))

The	output	that	we	receive,	as	shown	in	the	following	snippet,	shows	that	the

predictive	performances	of	the	individual	classifiers	are	almost	equal:

10-fold	cross	validation:

ROC	AUC:	0.92	(+/-	0.20)	[Logistic	Regression]

ROC	AUC:	0.92	(+/-	0.15)	[Decision	Tree]

ROC	AUC:	0.93	(+/-	0.10)	[KNN]

You	may	be	wondering	why	we	trained	the	logistic	regression	and	k-nearest
neighbors	classifier	as	part	of	a	pipeline.	The	cause	here	is	that,	as	we	said,
logistic	regression	and	k-nearest	neighbors	algorithms	(using	the	Euclidean
distance	metric)	are	not	scale-invariant	in	contrast	with	decision	trees.	However,
the	Ir	advantages	are	all	measured	on	the	same	scale;	it	is	a	good	habit	to	work
with	standardized	features.

Now,	let's	move	on	to	the	more	exciting	part	and	combine	the	individual
classifiers	for	majority	rule	voting	in	our	M_V_C:

>>>	mv_cl	=	M_V_C(

...	cl=[pipe1,	clf2,	pipe3])

>>>	cl_labels	+=	['Majority	Voting']

>>>	all_cl	=	[pipe1,	clf2,	pipe3,	mv_clf]

>>>	for	cl,	label	in	zip(all_clf,	clf_labels):

...	sc	=	cross_val_score(est=cl,

...	X=X_train,

...	y=y_train,

...	cv=10,

...	scoring='roc_auc')

...	%	(scores.mean(),	scores.std(),	label))

R_AUC:	0.92	(+/-	0.20)	[Logistic	Regression]

R_AUC:	0.92	(+/-	0.15)	[D_T]

R_AUC:	0.93	(+/-	0.10)	[KNN]

R_AUC:	0.97	(+/-	0.10)	[Majority	Voting]

Additionally,	the	output	of	the	MajorityVotingClassifier	has	substantially
improved	over	the	individual	classifiers	in	the	10-fold	cross-validation
evaluation.

Classifier

In	this	part,	you	are	going	to	compute	the	R_C	curves	from	the	test	set	to	check
if	the	MV_Classifier	generalizes	well	to	unseen	data.	We	should	remember	that
the	test	set	will	not	be	used	for	model	selection;	the	only	goal	is	to	report	an
estimate	of	the	accuracy	of	a	classifer	system.	Let’s	take	a	look	at	Import
metrics.

import	roc_curve	from	sklearn.metrics	import	auc

cls	=	['black',	'orange',	'blue',	'green']

ls	=	[':',	'--',	'-.',	'-']

for	cl,	label,	cl,	l	\

...	in	zip(all_cl,	cl_labels,	cls,	ls):

...	y_pred	=	clf.fit(X_train,

...	y_train).predict_proba(X_test)[:,	1]

...	fpr,	tpr,	thresholds	=	rc_curve(y_t=y_tes,

...	y_sc=y_pr)

...	rc_auc	=	ac(x=fpr,	y=tpr)

...	plt.plot(fpr,	tpr,

...	color=clr,

...	linestyle=ls,

...	la='%s	(ac	=	%0.2f)'	%	(la,	rc_ac))

>>>	plt.lg(lc='lower	right')

>>>	plt.plot([0,	1],	[0,	1],

...	linestyle='--',

...	color='gray',

...	linewidth=2)

>>>	plt.xlim([-0.1,	1.1])

>>>	plt.ylim([-0.1,	1.1])

>>>	plt.grid()

>>>	plt.xlb('False	Positive	Rate')

>>>	plt.ylb('True	Positive	Rate')

>>>	plt.show()

As	we	can	see	in	the	resulting	ROC,	the	ensemble	classifer	also	performs	well
on	the	test	set	(ROC	AUC	=	0.95),	whereas	the	k-nearest	neighbors	classifer
seems	to	be	over-fitting	the	training	data	(training	ROC	AUC	=	0.93,	test	ROC
AUC	=	0.86):

You	only	choose	two	features	for	the	classification	tasks.	It	will	be	interesting	to
show	what	the	decision	region	of	the	ensemble	classifer	actually	looks	like.
Although	it	is	not	necessary	to	standardize	the	training	features	prior	to	model	to
fit	because	our	logistic	regression	and	k-nearest	neighbors	pipelines	will
automatically	take	care	of	this,	you	will	make	the	training	set	so	that	the	decision
regions	of	the	decision	tree	will	be	on	the	same	scale	for	visual	purposes.

Let’s	take	a	look:

>>>	sc	=	SS()

X_tra_std	=	sc.fit_transform(X_train)

From	itertools	import	product

x_mi=	X_tra_std[:,	0].mi()	-	1

	x_ma	=	X_tra_std[:,	0].ma()	+	1

y_mi	=	X_tra_std[:,	1].mi()	-	1

y_ma	=	X_tra_std[:,	1].ma()	+	1

	xx,	yy	=	np.meshgrid(np.arange(x_min,	x_max,	0.1),

...	np.arange(y_mi,	y_ma,	0.1))

	f,	axarr	=	plt.subplots(nrows=2,	ncols=2,

sharex='col',

sharey='row',

figze=(7,	5))

for	ix,	cl,	tt	in	zip(product([0,	1],	[0,	1]),

all_cl,	cl_lb):

...	cl.fit(X_tra_std,	y_tra)

...	Z	=	clf.predict(np.c_[xx.ravel(),	yy.ravel()])

...	Z	=	Z.resh(xx.shape)

...	axarr[idx[0],	idx[1]].contou(_xx,	_yy,	Z,	alph=0.3)

...	axarr[idx[0],	idx[1]].scatter(X_tra_std[y_tra==0,	0],

...	X_tra_std[y_tra==0,	1],

...	c='blue',

...	mark='^',

...	s=50)

...	axarr[idx[0],	idx[1]].scatt(X_tra_std[y_tra==1,	0],

...	X_tra_std[y_tra==1,	1],

...	c='red',

...	marker='o',

...	s=50)

...	axarr[idx[0],	idx[1]].set_title(tt)

>>>	plt.text(-3.5,	-4.5,

...	z='Sl	wid	[standardized]',

...	ha='center',	va='center',	ftsize=12)

>>>	plt.text(-10.5,	4.5,

...	z='P_length	[standardized]',

...	ha='center',	va='center',

...	f_size=13,	rotation=90)

>>>	plt.show()

	

Interestingly,	but	also	as	expected,	the	decision	regions	of	the	ensemble	classifier
seem	to	be	a	hybrid	of	the	decision	regions	from	the	individual	classifiers.	At
first	glance,	the	majority	vote	decision	boundary	looks	a	lot	like	the	decision
boundary	of	the	k-nearest	neighbor	classifier.	However,	we	can	see	that	it	is
orthogonal	to	the	y	axis	for	sepal	width	≥1,	just	like	the	decision	tree	stump:

Before	you	learn	how	to	tune	the	individual	classifer	parameters	for	ensemble
classification,	let's	call	the	get_ps	method	to	find	an	essential	idea	of	how	we	can
access	the	individual	parameters	inside	a	GridSearch	object:

>>>	mv_clf.get_params()

{'decisiontreeclassifier':	DecisionTreeClassifier(class_weight=None,

criterion='entropy',	max_depth=1,

max_features=None,	max_leaf_nodes=None,	min_samples_

leaf=1,

min_samples_split=2,	min_weight_fraction_leaf=0.0,

random_state=0,	splitter='best'),

'decisiontreeclassifier__class_weight':	None,

'decisiontreeclassifier__criterion':	'entropy',

[...]

'decisiontreeclassifier__random_state':	0,

'decisiontreeclassifier__splitter':	'best',

'pipeline-1':	Pipeline(steps=[('sc',	StandardScaler(copy=True,	with_

mean=True,	with_std=True)),	('clf',	LogisticRegression(C=0.001,	class_

weight=None,	dual=False,	fit_intercept=True,

intercept_scaling=1,	max_iter=100,	multi_class='ovr',

penalty='l2',	random_state=0,	solver='liblinear',

tol=0.0001,

verbose=0))]),

'pipeline-1__clf':	LogisticRegression(C=0.001,	class_weight=None,

dual=False,	fit_intercept=True,

intercept_scaling=1,	max_iter=100,	multi_class='ovr',

penalty='l2',	random_state=0,	solver='liblinear',

tol=0.0001,

verbose=0),

'pipeline-1__clf__C':	0.001,

'pipeline-1__clf__class_weight':	None,

'pipeline-1__clf__dual':	False,

[...]

'pipeline-1__sc__with_std':	True,

'pipeline-2':	Pipeline(steps=[('sc',	StandardScaler(copy=True,	with_

mean=True,	with_std=True)),	('clf',	KNeighborsClassifier(algorithm='au

to',	leaf_size=30,	metric='minkowski',

metric_params=None,	n_neighbors=1,	p=2,

w='uniform'))]),

'p-2__cl”:	KNC(algorithm='auto',	leaf_

size=30,	met='miski',

met_ps=None,	n_neighbors=1,	p=2,

w='uniform'),

'p-2__cl__algorithm':	'auto',

[...]

'p-2__sc__with_std':	T}

Depending	on	the	values	returned	by	the	get_ps	method,	you	now	know	how	to
access	the	individual	classifier's	attributes.	Let’s	work	with	the	inverse
regularization	parameter	C	of	the	logistic	regression	classifier	and	the	decision
tree	depth	via	a	grid	search	for	demonstration	purposes.	Let’s	take	a	look	at:

>>>	from	sklearn.grid_search	import	GdSearchCV

>>>	params	=	{'dtreecl__max_depth':	[0.1,	.02],

...	'p-1__clf__C':	[0.001,	0.1,	100.0]}

>>>	gd	=	GdSearchCV(estimator=mv_cl,

...	param_grid=params,

...	cv=10,

...	scoring='roc_auc')

>>>	gd.fit(X_tra,	y_tra)

After	the	grid	search	has	completed,	we	can	print	the	different	hyper	parameter
value	combinations	and	the	average	R_C	AC	scores	computed	through	10-fold
cross-validation.	The	code	is	as	follows:

>>>	for	params,	mean_sc,	scores	in	grid.grid_sc_:

...	print("%0.3f+/-%0.2f	%r"

...	%	(mean_sc,	sc.std()	/	2,	params))

0.967+/-0.05	{'p-1__cl__C':	0.001,	'dtreeclassifier__

ma_depth':	1}

0.967+/-0.05	{'p-1__cl__C':	0.1,	'dtreeclassifier__ma_

depth':	1}

1.000+/-0.00	{'p-1__cl__C':	100.0,	'dtreeclassifier__

ma_depth':	1}

0.967+/-0.05	{'p-1__cl__C':	0.001,	'dtreeclassifier__

ma_depth':	2}

0.967+/-0.05	{'p-1__cl__C':	0.1,	'dtreeclassifier__ma_

depth':	2}

1.000+/-0.00	{'p-1__cl__C':	100.0,	'dtreeclassifier__

ma_depth':	2}

>>>	print('Best	parameters:	%s'	%	gd.best_ps_)

Best	parameters:	{'p1__cl__C':	100.0,

'dtreeclassifier__ma_depth':	1}

>>>	print('Accuracy:	%.2f'	%	gd.best_sc_)

Accuracy:	1.00

	

	

	

	

	

	

	

Questions
	

1.	 Explain	how	to	combine	different	models	in	detail.
	
	
2.	 What	are	the	goals	and	benefits	of	combining	models?

	CHAPTER 1
	INTRODUCTION TO MACHINE LEARNING
	Theory
	What is machine learning?
	Why machine learning?
	When should you use machine learning?
	Types of Systems of Machine Learning
	Supervised and unsupervised learning
	Supervised Learning
	The most important supervised algorithms
	Unsupervised Learning
	The most important unsupervised algorithms

	Reinforcement Learning
	Batch Learning
	Online Learning
	Instance based learning
	Model-based learning
	Bad and Insufficient Quantity of Training Data
	Poor-Quality Data
	Irrelevant Features
	Feature Engineering

	Testing
	Overfitting the Data
	Solutions

	Underfitting the Data
	Solutions

	EXERCISES
	SUMMARY
	REFERENCES

	CHAPTER 2
	CLASSIFICATION
	Installation
	The MNIST
	Measures of Performance
	Confusion Matrix
	Recall
	Recall Tradeoff
	ROC
	Multi-class Classification
	Training a Random Forest Classifier
	Error Analysis
	Multi-label Classifications
	Multi-output Classification
	EXERCISES
	REFERENCES

	CHAPTER 3
	HOW TO TRAIN A MODEL
	Linear Regression
	Computational Complexity
	Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent
	Polynomial Regression
	Learning Curves
	Regularized Linear Models
	Ridge Regression
	Lasso Regression

	EXERCISES
	SUMMARY
	REFERENCES

	Chapter 4
	Different models combinations
	Implementing a simple majority classifer
	Combining different algorithms for classification with majority vote
	Questions

